Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 19(3): e0299556, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38466679

RESUMEN

OBJECTIVE: This study aims to comprehend the impact of handball practice on sub-elite athletes by investigating transcriptomic changes that occur during a match. The primary focus encompasses a dual objective: firstly, to identify and characterize these transcriptomic alterations, and secondly, to establish correlations between internal factors (gene expression), and external loads measured through Electronic Performance and Tracking Systems (EPTS variables). Ultimately, this comprehensive analysis seeks to evaluate both acute and chronic responses to exercise within the context of handball training. METHODS: The study included sixteen elite male athletes from the FC Barcelona handball second team. Blood samples were extracted at three different time points: before the match at baseline levels (T1), immediately upon completion (T2), and 24 hours after completion (T3). Differential gene expression, Gene Ontology Term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted in two comparisons: Comparison 1 (T1 vs T2) and Comparison 2 (T1 vs T3). Further, the correlation between gene expression levels and training variables (external load) was conducted. RESULTS: In T1 vs T2, 3717 of the 14632 genes detected were differentially expressed (adjusted p-value < 0.05), and enrichment of terms related to the immune system, mitochondria, and metabolic processes was found. Further, significant linear correlations were obtained between High-Speed running (HSR) and high-intensity variables such as acceleration ACC and deceleration DEC values with amino acids, and inflammatory and oxidative environment-related pathways, both in chronic and acute response. CONCLUSIONS: This research highlights the effects of external workload on elite athletes during a handball match and throughout the season. The study identifies deregulation in the immune system, mitochondrial functions, and various metabolic pathways during the match. Additionally, it establishes correlations between the external load and pathways associated with amino acids, inflammation, oxidative environment, and regulation. These findings offer insights into the immediate and chronic responses of athletes to physical effort.


Asunto(s)
Rendimiento Atlético , Carrera , Humanos , Masculino , Rendimiento Atlético/fisiología , Carrera/fisiología , Atletas , Perfilación de la Expresión Génica , Aminoácidos
2.
PLoS One ; 18(8): e0289752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585452

RESUMEN

The objective of this study is to automate and analyse the quantification of external load during an elite men's handball match. This study was carried out using data from a local positioning system and inertial measurement units. The literature review leads us to assume that physical demands are different depending on position, player specialty and phases of the game. In order to do this analysis, raw data was used from professional competitors of a Spanish club during National and European competition matches. First, a game phase algorithm was designed to automate phase recognition. Then, a descriptive evaluation of the means and standard deviation was performed with the following variables: total distance, total time, total Accel'Rate, the percentages of distance and time per speed and displacement direction. A Kruskal Wallis test was applied to normalized distance and normalized Accel'Rate. Defensive play showed the highest values on covered distance (930.6 ± 395.0 m). However, normalized distance showed significant differences (p<0.05) across all phases with defensive play (558.8 ± 53.9 m/10min) lower than offensive play (870.3 ± 145.7 m/10min), offensive transition (1671.3 ± 242.0 m/10min) or defensive transition (1604.5 ± 242.0 m/10min). Regarding position, wing players covered the most distance (2925.8 ± 998.8 m) at the second highest intensity (911.4 ± 63.3 m/10min) after offensive back players (1105.0 ± 84.9 m/10min). Significant difference in normalized requirements were found between each playing position: goalkeepers, wings, versatile backs, versatile line players, offensive backs and defensive backs (p<0.05), so a separation between offensive or defensive specialists is plausible and necessary. In conclusion, as physical demands differ for each game phase, activity profile among players is modulated by their playing position and their specialty (offense, defense or none). This study may help to create individual training programs according to precise on-court demands.


Asunto(s)
Rendimiento Atlético , Carrera , Masculino , Humanos , Examen Físico , Tiempo
3.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957247

RESUMEN

In handball, the way the team organizes itself in defense can greatly impact the player's activity and displacement during the play, therefore impacting the match demands. This paper aims (1) to develop an automatic tool to detect and classify the defensive organization of the team based on the local positioning system data and check its classification quality, and (2) to quantify the match demands per defensive organization, i.e., defining a somehow cost of specific defensive organizations. For this study, LPS positional data (X and Y location) of players from a team in the Spanish League were analyzed during 25 games. The algorithm quantified the physical demands of the game (distance stand, walk, jog, run and sprint) broken down by player role and by specific defensive organizations, which were automatically detected from the raw data. Results show that the different attacking and defending phases of a game can be automatically detected with high accuracy, the defensive organization can be classified between 1-5, 0-6, 2-4, and 3-3. Interestingly, due to the highly adaptive nature of handball, differences were found between what was the intended defensive organization at a start of a phase and the actual organization that can be observed during the full defensive phase, which consequently impacts the physical demands of the game. From there, quantifying for each player role the cost of each specific defensive organization is the first step into optimizing the use of the players in the team and their recovery time, but also at the team level, it allows to balance the cost (i.e., physical demand) and the benefit (i.e., the outcome of the defensive phase) of each type of defensive organization.


Asunto(s)
Rendimiento Atlético , Humanos
4.
Apunts, Med. esport (Internet) ; 57(215): 100390, July - September 2022. tab, graf
Artículo en Inglés | IBECS | ID: ibc-207613

RESUMEN

Introduction: The purpose of this study was to compare the most demanding scenarios (MDS) of match-play across five different team sports of the same club (basketball, futsal, handball, rink hockey and soccer) during five different time epochs (30, 60, 120, 180 and 300 s).Material and methodsSixty-five professional male players were monitored across 14 to 17 official matches via a local positioning system. Peak physical demands included total distance, distance, and actions >18 km·h−1 and distance and number of accelerations and decelerations >2 m·s−2. One-way analysis of variance and Tukey post-hoc tests were used to test statistical significance (p <.05), whereas standardized Cohen's effect size and the respective 95% confidence intervals were calculated to detect differences between team sports.ResultsWhile soccer and rink hockey achieved the greatest MDS in total distance, and distance and number of actions >18 km·h−1 during all the time epochs examined, basketball presented the highest peak values in number of accelerations and decelerations >2 m·s−2 during 30-s and 60-s time epochs.ConclusionIn conclusion, the MDS during competition are significantly different across team sports, which can be useful in determining the upper limit threshold for sport-specific training optimisation and return to play purposes. (AU)


Asunto(s)
Humanos , Masculino , Deportes , Rendimiento Atlético/estadística & datos numéricos , Fútbol , Baloncesto , Hockey
5.
Biol Sport ; 38(4): 753-759, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34937987

RESUMEN

The aim of this research was to analyse the capacity of a home-based training programme to preserve aerobic capacity and jumping performance in top-level handball players during the COVID-19 lockdown. Eleven top-level male handball players from the same team participated in the study. A submaximal shuttle run test and a counter-movement jump test were used to measure the players' aerobic fitness and lower limb explosive strength, respectively. A 9-week home-based training programme was followed during lockdown. Pre-test measurements were assessed before the pandemic on 29 January 2020 and ended on 18 May 2020. Moderate significant mean heart rate increases were found in the late stages of the submaximal shuttle run test after the lockdown (stage 5, 8.6%, P = 0.015; ES = 0.873; stage 6, 7.7%, P = 0.020; ES = 0.886; stage 7, 6.4%, P = 0.019; ES = 0.827). Moderate significant blood lactate increases were observed immediately after the submaximal shuttle run test following the lockdown (30.1%, P = 0.016; ES = 0.670). In contrast, no changes were found in jump performance. A structured home-based training programme during the COVID-19 lockdown preserved lower limb explosive strength but was an insufficient stimulus to maintain aerobic capacity in top-level handball players.

6.
Biol Sport ; 38(3): 475-481, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475629

RESUMEN

Monitoring workload is critical for elite training and competition, as well as preventing potential sports injuries. The assessment of external load in team sports has been provided with new technologies that help coaches to individualize training and optimize their team's playing system. In this study we characterized the physical demands of an elite handball team during an entire sports season. Novel data are reported for each playing position of this highly strenuous body-contact team sport. Sixteen world top players (5 wings, 2 centre backs, 6 backs, 3 line players) were equipped with a local positioning system (WIMU PRO) during fourteen official Spanish first league matches. Playing time, total distance covered at different running speeds, and acceleration variables were monitored. During a handball match, wings cover the greater distance by high-speed running (> 5.0 m·s-1): 410.3 ± 193.2 m, and by sprint (> 6.7 m·s-1): 98.0 ± 75.4 m. Centre backs perform the following playing position that supports the highest speed intensities during the matches: high-speed running: 243.2 ± 130.2 m; sprint: 62.0 ± 54.2 m. Centre backs also register the largest number of high-intensity decelerations (n = 142.7 ± 59.5) compared to wings (n = 112.9 ± 56.0), backs (n = 105.2 ± 49.2) and line players: 99.6 ± 28.9). This study provides helpful information for professional coaches and their technical staff to optimize training load and individualize the physical demands of their elite male handball players depending on each playing position.

7.
Int J Sports Physiol Perform ; 12(8): 1115-1118, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28051327

RESUMEN

Despite approval of the use of electronic performance-tracking systems (EPTSs) during competition by the International Football Association Board, other team-sport organizations and leagues have banned their use due to "safety concerns," with no evidence to support this assertion. The aim of the current brief report was to provide empirical evidence to support the widespread use of EPTSs across all sports by examining safety issues concerning their use in a multi-team-sport club. Five outdoor football teams (1st team, 2nd team, under 19 [U-19], under 18 [U-18], and 1st team female) and 3 indoor-sport (basketball, futsal, and handball) teams were monitored, accounting for a total of 63,734 h of training and 12,748 h of game time. A questionnaire was sent to all fitness coaches involved, and the clinical history was reviewed for every medical issue reported. Six minor chest contusions were recorded in female football goalkeepers wearing the frontal chest strap (3.17 episodes per 1000 training h). During training, 3 episodes of minor skin abrasion affecting the thoracic area due to wearing vests too tight were recorded in the U-19 football team (0.21 per 1000 h) and 2 episodes in U-18 (0.39 per 1000 h). It must be noted that none of these episodes resulted in lost days of training or games, and none required medical assistance. In conclusion, empirical evidence confirms that EPTSs are safe to use across team sports.


Asunto(s)
Traumatismos en Atletas/etiología , Monitores de Ejercicio/efectos adversos , Sistemas de Información Geográfica/instrumentación , Deportes , Contusiones/etiología , Femenino , Humanos , Masculino , Piel/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...